Real-World Deployments of Remote Wireless Power in Wireless Sensor Networks and other Applications

Charles Greene, Ph.D.
Chief Operating & Technical Officer
+1.412.923.4770
cgreene@powercastco.com

June 26, 2018
Enabling products that eliminate batteries or battery maintenance

- Founded in 2003
- Located in Pittsburgh, PA, USA
- 46 issued and 29 pending patents
- Products available since 2010
- Distributors: Arrow Electronics & Mouser Electronics

Solutions for sensors and the IoT

- RF Energy Harvesting
- Wireless Power
- Power Management
RF Wireless Power Markets

- Identification
- Consumer Electronics (recharging)
- Electronic Labeling
- Medical Sensors
- Advanced access control
- Process monitoring (Wireless sensors)
- Advanced packaging (illumination)

Pre-Conference Symposia: June 26, 2018
Conference & Expo: June 27-28, 2018

#SENSORS18 WWW.SENSORSEXPO.COM
Market Segment Value Propositions

- **Industrial – Minimizes Operating Costs**
 - Eliminates cost to hard wire or replace batteries – e.g. wireless sensors
 - Eliminates service downtime caused by depleted batteries
 - Reduces battery handling and disposal

- **OEMs – Improved Product Design**
 - Product differentiation – eliminate wires, cables, connectors
 - Sealed devices – less expensive enclosures and manufacturing, waterproof
 - Reliability – improved durability, reduced product failures, eliminate ESD issues

- **Consumers – Convenience and Usability**
 - Placement flexibility – no charging mats
 - Untethered embedded power – eliminate wires, cables, connectors
 - Transparent charging – no user action required
RF Power Categories

Intentional
Wireless Power

Anticipated
RF Harvesting

Ambient
Unpredictable
Powerharvester® Chips

PCC110 – RF to DC Converter
- High conversion efficiency, up to 75%
- Converts low-level RF signals enabling long range applications
- RF operating range: -18dBm to +20dBm
- Frequency range: 10MHz to 6GHz
- Harvests from all modulation types
- Interoperable with numerous RF sources: Powercast TX91501 transmitter, RFID readers, Mobile Phones, Wi-Fi routers, etc.
- SC-70 package

PCC210 – Boost Converter
- High efficiency, up to 95%
- Operation down to 0.4V input
- Capable of 5.5V @ 50mA output
- Resistor settable output voltage
- SOT23-6 package
Key Design Points

- **US Bands**: 915MHz, 2.4GHz, 5.8GHz
- Generally, the lower the frequency, the more throughput with omnidirectional operation
- Receiving device size sets the lowest frequency
 - Game controller can fit a 915MHz dipole
 - Small hearing aids require 2.4GHz or 5.8GHz
- **Antenna design is critical**
 - Antenna loss has a direct impact on throughput
 - Electrically small antennas are possible but not always practical due to reduced bandwidth
- Point-to-point, point-to-multipoint beam steering antenna arrays are possible but with increased complexity comes increased cost
Does Frequency Matter?

- Power Density (S) is independent of frequency.
- Effective Area (A_e) of an antenna type decreases by frequency squared.
- But antenna size can be increased if the device allows, however larger antennas at higher frequencies become more directional.

$$S = \frac{P_T G_T(\theta_T, \phi_T)}{4\pi r^2} (1 - |\Gamma_T|^2)$$

$$A_e = \frac{G_R(\theta_R, \phi_R)\lambda^2}{4\pi} (1 - |\Gamma_R|^2) |\hat{p}_T \cdot \hat{p}_R|^2$$

What does this mean?

$$P_R = P_T \frac{G_T(\theta_T, \phi_T)G_R(\theta_R, \phi_R)\lambda^2}{(4\pi r)^2} (1 - |\Gamma_T|^2)(1 - |\Gamma_R|^2) |\hat{p}_T \cdot \hat{p}_R|^2$$

$$P_R = P_T \frac{G_TG_R\lambda^2}{(4\pi r)^2}$$

$$2xf \rightarrow \frac{1}{2}\lambda \rightarrow \frac{1}{4}P_R \quad \therefore \quad G_R \uparrow 4 \rightarrow = P_R$$
Technology Advantages

- High efficiency over a broad operating range
- Maintains efficiency with changes in:
 - Input power (changes in distance & orientation)
 - Battery voltage and recharging current (dead to fully charged)
 - Load resistance
- Over 850 MHz operating bandwidth
 - Essential for ambient energy harvesting
 - Easy scalability for geographic regions using different frequency bands
- Result ...
 - Horizontal solution
 - Better performance & more power
 - Simplified design-in
Harvester Performance

915 ISM
1.2 V
Harvester Performance

2.4 GHz ISM
1.2 V

Efficiency (%) vs. P_{in} (dBm)

- 2400MHz
- 2450MHz
- 2500MHz
Real World Applications
High Function RFID Tags

- Identification
- Smart Packaging
 - Bi-Stable Display
 - Indications – LED, Audible
- Security
 - Biometrics and Encryption

Sensing
- Temperature
- Humidity
- Light Level
- Stress/Strain
- Heart Rate

Powercast provides >10x the power vs traditional RFID
Powercast enables a complete wireless infrastructure for power and data.
RFID Batteryless Price Tags

- Perpetual operation without batteries
- Instant updating of multiple tags from up to 2m
- Delayed updates up to 10m
- Configurable as hang tag or shelf-edge label
- Display remains constant after writing
 - No need for batteries
 - Powered by UHF
- Eco-friendly alternative to traditional paper price tags
- Available Q4
Smart/Illuminated Packaging

- Brand/product differentiator
- “Try me” without the need for power source or batteries
- Interactive
- Reusable
- Components take up less space than traditional smart packaging options
- Integrable as printed and flexible electronics
Wearables

- Wireless charging eliminates the need to remove the battery pack in wearables
- Flexible antennas allow for integration into any garment
- Applications
 - Safety gear
 - Athletic shirts with sensors
 - Heated garments
- Closet Recharging
Bulk Trickle Charging

- Freedom of placement
- Eliminate wires and connectors
- Automatic/transparent charging
- Multiple battery types/chemistry
PowerSpot® Consumer Electronics Charging

- Controllers and gaming accessories
- Headphones and headsets
- Wearables
- Computer peripherals
- E-paper displays
- Hearing aids and small personal medical devices
- Smart cards
PowerSpot® Entertainment Stand Recharging
PowerSpot® Countertop Recharging
PowerSpot® Desktop Recharging
Multiple PowerSpot® Transmitters Allow Convenient Charging Throughout the Home
Headphones Retrofit

Sony XB950B1 Extra Bass wireless Bluetooth headphones

Shown at CES 2018
Initial Use Case Data

- **Use Case**
 - Product is used during the day
 - At night, the product is placed on a desk or countertop near the PowerSpot transmitter to recharge

- **Assuming:**
 - 4 hours of use per day
 - 12 hours of PowerSpot recharging per day

- **Result:**
 - At 6 inches or less, Sony XB950B1 headphones never need to be plugged in again
 - At 2-3 inches, fully recharge overnight (570mAh Battery)
Technical Update

- **Design**
 - The design was updated and the antenna was further optimized for the application

- **Assuming:**
 - 4 hours of use per day
 - 12 hours of PowerSpot recharging per day

- **Result:**
 - At 12 inches or less, Sony XB950B1 headphones never need to be plugged in again
 - At 3 inches or less, fully recharge overnight (570mAh Battery)
Xbox Controller Retrofit

- Utilizes Powerharvester chip
- Compatible with PowerSpot

Battery pack installed

Wirelessly rechargeable retrofit battery pack

Shown at CES 2018
Expanding the Market

PCC114 Powerharvester RF to DC Converter Chip

- 7x smaller, 20x less volume than PCC110
 Footprint: 1mm x 0.6mm x 0.3mm
- Enables wireless energy harvesting in virtually any device
Future Applications

- Hearing aids
- Smart cards
- Consumer Electronics
- Other small medical devices

The PCC114 Powerharvester can harvest energy from an anticipated RF source such as an NFC POS reader.
Thank You
Visit us at Booth 940!

Charles Greene, Ph.D.
Chief Operating & Technical Officer
+1.412.923.4770
cgreene@powercastco.com

POWERCAST®
620 Alpha Drive
Pittsburgh, PA 15238 USA
www.powercastco.com